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Preface

This thesis is a continuation of work previously done at the Air
Force Institute of Technology using Monte Carlo sampling techniques to
conduct sequential probability ratio tests of the Weibull density
function. It is hoped that this thesis will provide more accurate and

dependable test plans of reliability when the underlying distribution

is a two-parameter Weibull.
I would like to thank my advisor, Dr. Albert H. Moore, for both

suggesting my topic, and providing guidance as the work progressed.
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Abstract

)

Monte Carlo Analysis techniques are used for the development of

test plans concerning hypothesized system reliabilities. Systems under

consideration are those in which component failure rates are best
described by the two-parameter Weibull probability density function.
The statistical test employed is Wald's sequential probability ratio
test using independent, asymptotically computed variances (Cramer-Rao
Lower Bound Technique). The null hypothesis, HO: R0 = 90, is tested
Three pairs

against alternative reliabilities of .854, .810, and .729.

of alpha and beta risk levels are considered for each test ((.1,.1),

b
¥
é (.2,.2), (.1,.2)). A truncation decision for the sequential test is

made at 1.5 times the fixed sample test size for the same conditions.

One thousand Monte Carlo repetitions are used for these test procedures.

AN
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"Test (SPRT). Wald states that the SPRT "frequently results in a savings

Sequential Testing of Hypotheses Concerning
the Reliability of a System Modeled by a
Two-Parameter Weibull Distribution

I. Introduction

The importance of reliability testing is reflected in the constantly
increasing emphasis placed on this subject by both government and com-
mercial industry. Most Department of Defense contracts impose some
degree of reliability requirements on the contractor. These range from

the définition of system reliability goals to the requirement for actual

demonstration of achievement. Many.of these have specific funds allo-
cated to the reljability effort. Some also require the development and
maintenance of a reliability program plan, and specify the preparation
of periodic reliability reports. Statistical testing, and in particular
Monte Carlo sampling techniques, have proven quite useful when testing

and evaluating the reliability of a system.

Purpose
The purpose of this thesis is to develop truncated (truncation

occurs at 1.5 times the fixed sample test size) sequential test plans,
concerning hypothesized system reliabilities. Testing applies to those ]
systems that can be modeled by the two-parameter Weibull probability

distribution. The test used is Wald's Sequential Probability Ratio ﬂ

of about 50 percent in the number of observations over the most efficient |
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test procedure based on a fixed number of observations" (Ref 28:1).
The null hypothesis, HO:R = .90, will be tested against alternative
reliabilities of .854, .810, and .729. Three sets of o and 8 risk

levels will be used as input: (.2,.2), (.1,.1), and (.1,.2).

Verification

Actual alpha errors will be evaluated by inputting H0 true, while
actual beta errors can be determined by inputting H] true. Verification
of these test plans will include evaluation of these Type I and Type II
errors using Monte Carlo simulation. Previous work at the Air Force
Institute of Technology (Ackerson 1977, Ballard 1978, Antoon 1979) have
shown Monte Carlo techniques quite useful in Weibull testing.

The test statistic employed for the sequential tests will be a

modification of the one used by Ballard in his 1978 thesis work. The

statistic is based on a Tiklihood ratio of the hypothesized reliabili-

ties, R0 and R]. 4§
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II. Background

The Weibull Distribution

In the late 1930's, the subject of fatigue 1ife in materials and
the related subject of extreme value theory were being studied by
Weibull (Ref 30), Gumbel (Ref 8), and Epstein (Ref 6) among others. In
1939 Waloddi Weibull, a professor at the Royal Institute of Techho]ogy
in Sweden, proposed the distribution named after him as an appropriate
distribution to describe the 1ife length of materials. In 1951, while
working for the A.B. Bofors Steel Company in Stockholm, Sweden, Weibull
demonstrated that this function could be used to model such things as;
yield strength of Bofors steel, size distribution of fly ash, fiber
strength of Indian cotton, length of Cytroidae, fatigue 1ife of steel,
statures for adult males born in the British Isles, and breadth of beans
of Phaseolus Vulgaris (Ref 29).

0f interest to the Air Force, is the fact that the Weibull density
function can be used to model aircraft subsystem life, the failure and
fatigue Tife of metals, the life of many electrical components, as well
as many other items currently in Air Force inventories. The probability

density function for the three-parameter Weibull is given by:

f(x;08,k,¢c) = kgx-cﬁk'] exp [-((x-c)/e)k] x>0 (M)
k
© 8,k>0
=0 elsewhere

Ty
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The three parameters are:

k-the shape parameter

g-the scale parameter

c-the location parameter

The shape parameter, k, determines the shape or amount of peak to
the curve. This parameter allows the failure rates to decrease, in-
crease, or remain constant over time. In reliability testing, k is
considered a function of mean ultimate strength (Ref 9:32) (note that
for k equal to one the distribution becomes exponential).

The scale parameter, 6, is sometimes referred to as the charac-
teristic life of the component being tested, and determines the spread
of the function about it's mean. In reliability testing, 8 is con-

sidered a function of stress (Ref 9:32).

The location parameter, c, is the value of x at which failures
begin to occur. In this thesis ¢ will be zero, reducing the three-
parameter Weibull distribution to two parameters. This indicates that
 ,-1 failures can occur immedjately after initiation of an operation or

function. The two-parameter Weibull distribution has the following

\ characteristics:

1. Probability density function (p.d.f.):

» f(x38,k) = kgxzk'] exp [-(x/8)¥] X0 ()
- “
8 8,k>0
= o elsewhere
.0




2. Cumulative distribution function (c.d.f.):

F(x) = 1 - exp [-(x/8)¥] x0 )
| 8,k>0
=g elsewhere

3. Reliability function (1 - F(x)):

R(x) = exp [-(x/8)] x>0 (4)
8,Kk>0
=0 elsewhere

The range of shapes that a graph of the Weibull density function
can take on is very broad, depending on the value of the scale para-
meter 5, and the shape parameter k. Figure 1 (Ref 4:31) shows three

of those curves with 6=1, corresponding to k=1/2, k=1, and k=3.

Sequential Tests of Hypotheses

i Sequential tests of hypotheses differ from fixed tests in that the
sample size is a random variable. After each trial, one of three
decisions must be made:
- 1. Accept the null hypothesis
 .,§ 2. Reject the null hypothesis
tbi‘ 3. Take another observation and continue testing
! The decision made is based upon a probability ratio test statistic.
" As mentioned previously this testing procedure was first developed

by Wald.
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Figure 1. Weibull Density Function for 9=]

In any statistical test of hypothesis, there exists three possible

results: the correct decision, a Type I error, or a Type II error.

The correct decision is when the test fails to reject the nuil hypo-

thesis, when it is true. A Type I error is when the test rejects the

null hypothesis, when it is true. A Type II error occurs when the test

fails to reject the null hypothesis, when the alternative hypothesis is

true. These two errors are referred to as the Alpha and Beta errors,

where Alpha is the probability of a Type I error occurring, and Beta
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is the probability of a Type II error occurring. Alpha is sometimes
called the producer's risk, while Beta is often referred to as the con-
sumer's risk (Ref 7:48).

Wald's sequential probability ratio test considers only two cases:
1) x admits a probability density function; 2) x has 'a discrete dis-
tribution (Ref 28:37). In other words, for the continuous case (such
as the Weibull) the density function must be known. The three decision
regions (acceptance, rejection, continue testing) were successfully
defined by Wald, provided the test statistic is based upon a probability
ratio. Upper and lower bounds are constructed using the desired Alpha
and Beta error levels (Ref 28:40-42).

1. Upper Bound

A = (1 - Beta)/Alpha (5)

2. Lower Bound

B = Beta/(1 - Alpha) (6)
The decision rules are:

1. Accept H0 ifZ <8
N 2. Reject HO if Zn > A
3. Take another observation and continue testing
_:‘."% ifB<Z <A

‘ (note: Zn is equal to the likelihood ratio or test statistic)




Figure 2 is a graphical representation of the sequential propability
ratio test (Ref 7:85), in which the decision to accept HO is made on the

eighth observation.

z
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Figure 2. Graphical Representation of a SPRT

Sequential Tests with the Weibull Distribution

Work on SPRTs with the Weibull distribution began in the early
1970s. In 1971, Nicolae and Obreja developed a sequential test for the
two-parameter Weibull distribution with known shape parameter (Ref
20:320-331). Since that time, additional work has been done at the
Air Force Institute of Technology. In 1975, Callahan derived formulas
far determining values for the test statistic, the limits A and B, the
expected time to failure, and the expected number of failures to a
decision. His work concerned both discrete and continuous samples
for SPRTs, accelerated SPRTs, and truncated SPRTs for the two-parameter
Weibull distribution with known shape parameter (Ref 5). Williams

conducted SPRTs on the two-parameter Weibull, with known shape para-




meter, to determine the effects of truncation points.(Ref 31).

Robinson developed a standardized set of SPRTs for use with the Weibull
distribution when the shape parameter is known (Ref 24). Hoffert
studied composite SPRTs for the Weibull scale parameter with the shape
parameter unknown (Ref 13). Ackerson (Ref 1) and Ballard (Ref 3) de-
veloped new SPRTs for the two-parameter Weibull distribution using
maximum likelihood estimates for the scale and shape parameters.

Antoon developed different methods to compute the variance of different
reliability estimates for systems modeled by the two-parameter Weibull

(Ref 2). Monte Carlo Analysis Techniques were used extensively in

these theses.

Y




IITI. Methodology

The objective of statistics is to make inferences about a
population based on the information contained within the sample data
(Ref 17:325). Inferences can be made by either testing hypotheses about
population parameters or by estimating the population parameters. A
statistical hypothesis is a statement about the parameters of the'random
variable(s). A simple hypothesis completely describes the distribution
while a composite hypothesis does not. For example, a hypothesis of the
form H: 8 ¢ w is called simple if w consists of a single point, and
composite if w has more than one element (Ref 18:281,290).

The reliability of a system is defined to be the probability that
the system will still be operating under stated environmental conditions
at some specified time t (Ref 16:8). This thesis will be concerned
with this reliability based on failure rates that start from initial

component use until failure of the component.

_Assumptions
1. Both the null and alternative hypotheses are simple, and of

the form:

e
n
s

atmt N e




2. Failure rates are best described by the two-parameter Weibull

probability density function which yields the following reliability

function:
R(t) = exp (-(t/6)¥)  t»o (7)
k,8>0
=0 elsewhere

where R is the reliability, t the time, and k and 8 are the shape and
scale parameters of the Weibull distribution (Ref 25:72).

3. The distribution of the estimated reliabilities is assumed to
be Normal and dependant only upon the true reliability, R, and the sample

size, n.

Generation of Random Weibull Deviates

Random Weibull deviates were generated using the CDC 6600 computer
and the International Mathematical and Statistics Library (IMSL) sub-
routine GGEXN (Ref 14), to first generate exponential deviates. The
mean and standard deviation is required as input to GGEXN. Recall that
for k equal to 1, the Weibull distribution becomes an exponential dis-

tribution with mean and standard deviation both equal to 8. Solving
k

equation (7) for & yields: 1

o = -(tX)/1n R(Y) (8)

This value of ek was used as input to GGEXN to create random deviates

with the hypothesized reliabilities. These deviates are then raised to
the 1/k power which yields a random Weibull deviate (Ref 12:406). The
value, R(t), is referred to as the input stream (Ref 3:10). When

generating Weibull deviates, if Ry is used for R(t) the data generated

N




is used to test the null hypothesis (input H0 true to determine the
probability of a Type I error, Alpha). When R] is used for R(t) the
data generated is used to test the alternate hypothesis (input H] true

to determine the probability of a Type II error, Beta).

Maximum Likelihood Estimation of Weibull Parameters

The procedure used to derive the maximum likelihood estimates
(MLE), k and 5, of the Weibull shape and scale parameters, k and 6,
was developed by Harter and Moore (Ref 11). They developed a procedure
for censored or uncensored samples for the three-parameter Weibull dis-

tribution. The likelihood function for the Weibull distribution is:

n
L(x,c,6,k) = 1 pdf (xi:c,e,k) (9)
i=1

The natural logarithm of the likelihood function is:

Inn! = 1n (n-m)! = Inr! + (m-r)(In k-k In ¢)

InlL

m m k
+ (k-1) = In (x;=¢c) - £ [(x;5-c)se]

i=r+] i=r+]

(n-m) [(xm-c)/e]k +rIn {1 - exp [-(xi—c)/e]k} (10)

The first partial derivative of equation (10), with respect to & is:

m
Ly = -k(m-r)/s + k = (xi-c)k/ek+] + k(n-m)

i=r+]
(xm-c)k/ek+] - kr (xrﬂ—c)k exp [-(xr+]-c)k/ek]
767 (1 - exp [-(xr+1:c)k/ek]}

12




The first partial derivative of equation (10), with respect to k is:

m m K
Lk = (m-r)(1/k-Ino8) + ¢ In (xi-c) -z [(xi-c)/e]
i=r+] j=r+]

In [(x-c)/6] = (n=m) [(x;-c)/61* In [(x -c)/e]
+ r(.xM-C)k Tn [(x.4q-c)/e] exp {-[(xH]-C)/e]k}

oK

765 (1 - exp [-(x,yy-c)*/6* D) (12

where the x; are the Weibull deviates, n is sample size, m is the first
order statistics of sample size n, r is the number of deviates censored
from below, and (n-m) is the number of deviates censored from above

(Ref 11). Since this thesis deals with the two-parameter Weibull dis-
tribution, as opposed to three, and there is no censoring, ¢=0, (n-m)=0,

and r=0. Substituting these values into equations (10), (11), and (12)

yeilds:
n
InL=1Inn! +n (Ink-k Ins8) + (k=1) £ 1n Xs
i=1
n k
- (x;/8) (13)
i=]
n k, k+1
Ly =-kn/e+kz (x;7/6°) (14)
i=]
n n K
Ly=n/k-ninse+z 1In X; = L (xi/e) In (xi/e) (15)
i=1 i=1
13




Equations (14) and (15) are then set equal to zero and solved for 6
and k respectively. Equation (14) set equal to zero can be solved

directly for 5 given E:

- n L L
. 8 = (I xik/n)”k (16)
i=)

This expression is then substituted into equation (15) for 6. Now,
since equation (15) set equal to zero is simply a function of the
deviates, xi's, sample size, n, and k, a root to this equation can be
approximated iteratively, using any one of a number of different
numerical methods. The method used here is the bisection method (Ref 14),
and 6 is reevaluated at each successive value of k.

Thoman, Baine, and Antle have provided an unbiasing factor for the
MLE of k (Ref 26). However, Petrich showed that as sample size increases,
this factor approaches one and can be neglected. for samples as small as

six (Ref 22:28-30). The unbiasing factor was not used in this thesis

since the minimum sample size is ten.

Other possible methods of estimating k and & are the linear <

regression method (Ref 21:48-50) and the method of matching moments
(Ref 23).

Once ﬁ and é have been determined, an estimate for the reliability

may be found using the formula:

-~

R = exp (-(t/8)¥] t>o (17)

. . U ~ Vo
FE B2
-,_---.'-LA-'-._. _—

——

k,5>o %

The estimate for the reliability, R, is essential for computing the

variance and the subsequent sequential tests. !

14
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Determination of Variance of ﬁ by Asymptotic and Empirical Means

Empirical methods for determining the variance of point estimators
are given by Mendenhall and Scheaffer (Ref 17:269), for both biased
and unbiased estimations. In addition to this, Antoon developed a pro-
cedure for empirically computing the variance of R using a program
called FITIT (Ref 2:22-25). Ballard, in his sequential tests, uses a
cubic approximation to empirically determine the variance of R. He
also computed varjances asymptotically using equations from Air Force
technical training notes (Ref 3:13-14).

In this thesis the variance of R used in the sequential testing
is computed by the Cramer-Rao Lower Bound (CRLB). Thoman, Bain, and
Antle (Ref 27) determined that ﬁ, the maximum Tikelihood estimator of
R, the true reliability (assuming a two-parameter Weibull distribution),
is very nearly unbiased and has a variance that is very nearly equal to

the CRLB for the variance of an unbiased estimator. The CRLB is a

function of R and n, and is given by the following formula:

CRLB = R%/n (In R)Z [1.109 - .514 1n (-1n R) + .608 (In (- 1n R))?] -
(18)
Here it is assumed that the CRLB is an asymptotic method for calculating

the variance of the estimated reliabilities.

Sequential Probability Ratio Tests of Reliability

Previous SPRTs of reliability at the Air Force Institute of
Technology have been conducted by Ackerson, Ballard, and Jewell. This
thesis is an attempt to extract the most successful methodologies,
along with the most recent test statistic, to provide more dependable

and accurate test plans.




Ackerson formed the following test statistic based on the

1ikelihood ratio of R]/RO:

. 22 82 . ono o2
Z, = In (Ry/R;) + R® (-R® + 2R, - Ry*)

2 2

ZRO o ﬁ

where R is the reliability as estimated from the samples using MLE of
k and 6, found by placing k and 6 in equation (7). Ry is the relia-
bility under the null hypothesis and R] is the reliability under the
alternate hypothesis. Ackerson computed the variance of the estimated
reliabilities using sets of equations from the Air Force technical
training notes.

Ballard developed and used the following test statistic for his

sequential tests:

= _ on a 2 2

Zn = In (L(Rl)/L(RO)) = 2RR.l - 2RR0 + R0 R.l (20)
2.

20 R

where the parameters are defined the same with the exception of the
variance calculation. Ballard computed the variance of the estimated
reliabilities using a cubic approximation generated by empirical

means.
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The test statistic employed in these sequential tests is formed

from the following likelihood ratio:

11 - 2
2 U 1 (R-R,)
/5 5 exp (- 5 21 )
L(R,) 1 7R, o)
LR 1 1 - )
0 —_ — _(R-R )
ooy P g0
0 fo R
Ro

This ratio is based on the normality assumption of the estimated

reliabilities. Reducing this equation and taking the natural logarithm

yields the form of the test statistic used for the SPRTs in this thesis:

1 (ﬁ"Ro)z 1 (ﬁ'R-I)Z
2,25 —% - 7~ - 1In (OE‘]) +1n (op ) (22)
o g o n 0
0 1

where R is the relijability as estimated from samples using MLE of k
and 8, R0 is the reliability under the null hypothesis and R] is the
reliability under the alternate hypcthesis. The variances of ﬁ] and

R0 are computed using the Cramer-Rao Lower Bound,

The decision boundaries for the sequential tests are developed

as follows:
B < L(R,)/L(Ro) < A (23)
In 8 < ln(L(R1)/L(R0)) < In A (24)

17
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and since
Z, = (LR )/L(RY)) (25)
In B < Zn <1In A (26)

A minimum sample size of 10, with a truncation decision occuring at

1.5 times the fixed sample size is employed for all tests in this thesis.

For a log-likelihood test, the truncation decision is to reject if
Zn > 0 and to accept if Zn < 0 at the truncation point. Figure 3 is
a graph of a typical truncated log SPRT when the minimum sample size is

10 and the test is truncated at 1.5 times the fixed sample size of 30.

Reject HO
Test Continue Testing Reject H0
Statiitic . *
(Z
n 0+ feieaeaa. t--x---. ..........
Y *
Continue Testing * Accept H0
Accept H0
0 5 10 15 20 25 30 35 40 45
Number of QObservations

Figure 3. Truncated Log SPRT
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Computerization

The first step in the computerization process was to develop a
program to estimate the shape and scale parameters for the two-parameter

Weibull distribution. This program is then incorporated into the main

program, to perform the sequential testing, as a subroutine. As
mentioned previously, the subroutine to estimate the parameters uses

the bisection method to find a root to equation (15). With each increase
in sample size, new estimates for k and theta must be calculated using
this additional information. Subroutine SOLVE is called each time an
additional observation is taken and parameter estimates are needed.

2 From within SOLVE, subroutine EVAL is called in order to evaluate
equation (15), since this equation involves summations and summations

Z' of logs. Values of THAT (estimate for theta) are also computed in EVAL

for each estimate of k (khat).

Complete listings for the two programs {one to estimate the alpha
error and one to estimate the beta error) are given in Appendix A.
Also illustrated in Appendix A, is a complete variable description list. .
The estimate for Alpha (program one) is performed as follows:
1. Input a sequence of Weibull deviates with Hy true (1ine 470).
2. Run 1000 sequential -tests (Monte Carlo sample size).

3. Number of test rejections/1000 is the estimate for alpha.

4, From the 1000 test runs, an average number of items tested to
R an accept decision-H, true (Aj), and an average number of items tested

. to a reject decision-H0 true (RO), can be calculated.

19
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5. The average sample size is a weighted sum of the above mentioned

averages, calculated by:
AVESAM = o Ry + (1-&)A0 (27)

The estimate for Beta (program two) is performed as follows:

1. Input a sequence of Weibull deviates with H1 true (1ine 480).
2. Run 1000 sequential tests.

3. Number of test acceptances/1000 is the estimate for beta.

4. From the 1000 test runs, an average number of items tested to

an accept decision-H, true (A]), and an average number of items tested |
to a reject decision-H1 true (R]), can be calculated.

5. The average sample size is computed as follows: !

AVESAM = (l-é)R] + 8 A, (28)

20




IV. Results and Recommendations :

Results
| Appendix B contains the computer results of the various Monte Carlo
simulations. 1000 Monte Carlo test runs are used for each case. Computer
Execution time varied between less than 1000 to over 6000 seconds, with
longer times being associated with those hypothesis tests in which the
difference in RO and R.I was less pronounced, and the output risks are
smaller. A minimum sample size of 10 is used for each test with the
exception of indicated departures during sensitivity analysis.

Table B-1 shows the sequential test results for testing the null
hypothesis HO:RO=.9 against the three alternatives HT:R1=.854, H]:R1=.81,
and H,:R

1 ]=.729. Three desired (input) alpha and beta risk level pairs

are used for each hypothesis test, (.1, .1), (.2, .2), and (.1, .2). The

criterion used to judge the "goodness" of the test plans is how close
the actual alpha and beta errors are in relation to the designed alpha
and beta output risks. Comparing the results here with those obtained
by Ballard shows noticeable improvement, especially in those cases
concerning alternate reliabilities of .81 and .729.

Sensitivity analysis was conducted to determine the effect of
changes in the minimum sample size and truncation point. One test case
was selected in which the minimum sample size was changed from 10 to 15
(Computer resources prevented the selection of additional cases to
perform sensitivity analysis on). Table B-2 indicates that this change
had a minimal effect on the test plans. There is only minor variation

jn the a and 3 levels accompanied by a small change in corresponding
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sample sizes. Also shown in Table B-2 is a change in the truncation point.

Here the minimum sample size was returned to 10, and the truncation peint
was moved from 1.5 to 2.0 times the fixed sample test size. Again it is
noted that this change had only a minor effect on the test plans.

To further balance the « and 8 levels, the boundaries of the test
region can be shifted. Results in Table B-1 show good reason to shift
since the alpha errors are consistently below design, while the beta
errors are consistently above design. Rather than shifting the boundaries,
it is much easier to make a shift in the test statistic to allow movement
into the desired test region. In this case a positive shift is required
in order to raise the alpha error and lower the beta error to more
closely resemble the design, and thereby accomplish a balance.

The test of hypothesis HO:RO=.9 versus the alternative H]:R]=.81
was selected to perform these shifts on (again computer resources pre-
vented the selection of additional cases). The three pairs of o and 3
risk levels were tested using various shifts in the test statistic.

Table B-3 shows the results of these shifts. These results are consistent
with theory in that, as the shift increases, the alpha level increases,
while the beta error decreases. This was the anticipated and desired
result.

Once the output risks have been balanced, they can be raised or
Towered by changing the design (input) risks. In this case the output
risks, after balancing, were above the desired a and 8 levels. Table
B-4 shows the results of a shift in the test statistic, along with input
risk levels designed to bring about the desired results. The input a

and 3 levels are well below those which are desired.
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Recommendations

Future research in this area should concern the development of a
test statistic that would require no shifting or balancing. Other
methods for estimating the variance for the estimated reliabilities may
be developed. Estimates for the parameters k and 6, may be accomplished
us%ng the linear regression method or the method of matching moments,
rather than the Maximum Likelihood method. Different Alpha and Beta
risk levels might prove to be a worthwhile area of investigation. In
addition to this, different tests of hypotheses might be developed in

order to extend these test plans.

23




10.

1.

Bibliography

Ackerson, M. Comparison of Fixed Sample and Sequential Tests of
Reliability of a System Whose Underlying Distribution is a Two-
Parameter Weibull. Thesis, Wright-Patterson AFB, Ohio: Air Force
Institute of Technology, December 1977.

Antoon, D. F. Confidence Intervals and Tests of Hypothesis of a
System Whose Underlying Distribution is a Two-Parameter WeibulT.
Thesis, Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, December 1979,

Ballard, J. L. Fixed and Sequential Test Plans for the Reliability
of a System Whose Underlying Distribution is a Two-Parameter Weibull.
Thesis, Wright-Patterson AFB, Ohio: Air Force Institute of Techno-
logy, December 1978,

Byers, J. K. and H. A. Weibe. Pocket Handbook on Reliability.
Prepared for: U.S. Army Aviation Systems Command, R&M Division,
Product Assurance Directorate (1977).

Callahan, J. C. Sequential Probability Ratio Tests for the Weibull
Distribution. Thesis, Wright-Patterson AFB, Ohio: Air Force
Institute of Technology, December 1975,

Epstein, B. "Application of the Theory of Extreme Values in
Fracture Problems." Journals of the American Statistical Association.
Vol. 43, pp. 403-412 (1948).

Ghosh, B. K. Sequential Tests of Statistical Hypotheses. Addison-
wes1ey, Reading, Massachusetts, 1970.

Gumbel, E. J. "Les valuers extremes des distributions statistiques."
Annales de 1'Institute Henri Poincare. V. 4, Fasc. 2, p. 115 (1935).

Gumbel, E. J. Statistical Theory of Extreme Values and Some Practical
Agg]icat1on Applied Mathematics Series Number 33, National Bureau
of Standards. Washington, D0.C., Government Pr1nt1ng Office (1954).

Harter, H. L. and A. H. Moore. "An Evaluation of Exponential and
Weibull Test Plans." IEEE Trans. Reliability, Vol. R-25, 1976
Jun, pp. 100-104,

Harter, H. L. and A. H. Moore. "Maximum Likelihood Estimation of
Parameters of Gamma and Weibull Populations from Complete and
Censored Samples." Technometrics, Vol. 7, pp. 639-643 (1965).

24




RO s cALODMADG Y o w50 LBt

12.

13,

14.

15,

16.

17.

18.

19.

20.

21.

22.

23.

24,

Harter, H. L. and A. H, Moore. "Point and Interval Estimates,
Based on M Order Statistics, for the Scale Parameter of a Weibull
Population with Known Shape Parameter." Technometrics, Vol. 7,
pp. 405-422 (1965).

Hoffert, R. L. A Monte Carlo Study of Composite Sequential Likelihood

Ratio Tests for the Weibull Scale Parameter. Thesis, Wright-
Patterson AFB, Ohio: Air Force Institute of Technology, December
1976.

Hornbeck, R. W. Numerical Methods. Quantum Publishers, Inc., New
York, 1975.

IMSL LIB2-0005, Vol. I (FORTRAN) CDC 6000/7000, CYBER 70/170 Series,
IMSL, Inc., Houston, 1975,

Jewell, A. T. Robust Sequential Test Plans for the Reliability of
a §ystem Modeled by a Two-Parameter Weibull Distribution. Thesis,
Wright-Patterson AFB, Ohio: Air Force Institute of Technology,
December 1980.

Mendenhall, W. and R. L. Scheaffer. Mathematical Statistics with
Applications. Duxbury Press, North Scituate, Massachusetts, 1973.

Mood, A. M. and F. A. Graybill. Introduction to the theory of
Statistics. 2d ed. McGraw-Hill, Inc., New York, 1963.

Moore, A. H., H. L. Harter and D. F. Antoon. “"Confidence Intervals
and Tests of Hypotheses for the Reliability of a 2-Parameter
Weibull System." IEEE Trans. Reliability, in Press December 1981.

Nicolea, T. and G. Obreja. "Sequential Tests for Two-Parameter
Weibull Distribution." Proceedings of the 4th Conference of
Probability Theory, pp. 329-342 (1971).

Park, W. J. Basic Concepts of Statistics and Their Application in
Composite Materials. Air Force Materials Laboratory, Wright-
Patterson AFB, Ohio, 1979.

Petrich, G. S. Discrimination Between Weibull Distributions by
Means of a Likelihood Ratio Test. Thesis, Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, December 1975,

Reliability Demonstration and Testing. Chanute Technical Training
Center (ATC), Chanute AFB, Il1linois, 1978.

Robinson, J. N. Sequential Probability Ratio Tests of the Scale
Parameter Between %wo Weibu istributions with Known Shape

Parameter. Thesis, Wright-Patterson AFB, Ohio: Air Force Institute
of Technology, December 1976.

—k e




25.

26.

27.

28.
29.

30.

31.

Technical Training, Reliahility/Maintainability, Reliability.
Student Guide and Workbook OZR2895G-119-120/0DF2895G-1-119-120,
Chanute Technical Training Center (ATC), Chanute AFB, Illinois,
1967.

Thoman, D. R., L. J. Baine and C. E. Antle. "Inferences on the
Parameters of the Weibull Distribution." Technometrics, Vol. 11,
pp. 445-460 (1969).

Thoman, D. R., L. J. Baine and C. E. Antle. "Maximum Likelihood
Estimation, Exact Confidence Intervals for Reliability, and
Tolerance Limits in the Weibull Distribution." Technometrics,
Vol. 12, No. 2, pp. 363-371 (1970).

Wald, A. Sequential Analysis. Wile, New York, 1947,

Weibull, W. "A Statistical Distribution of Wide Applicability."
Journal of Applied Mechanics, Transactions of ASME, 18: 293-297
(1951].

Weibull, W. "A Statistical Theory of the Strength of Materials."”
Ing. Vetenskaps Akad. Handl., No. 151 (1939).

Williams, J. R., Jr. Development of Standardized Set of Truncated
Probability Ratio Tests for Use with the Weibull Distribution.
Thesis, Wright-Patterson AFB, Qhio: Air Force Institute of
Technology, December 1975,




<C
x
K
o
[
@
Q.
Q.
<

B asaie. i ) -




e SNBSS AT AR ENTE e o B - =

Appendix A

Computer Programs

Program one Performs sequential tests of hypothesis concerning system
i reliabilities to estimate the Alpha error.

Program two Performs sequential tests of hypothesis concerning system
; reliabilities to estimate the Beta error.

Note: The IMSL Library must be attached

Variable Descriptions

ACCEPT - number of test accept decisions
ACCSAM - accept decision sample size
| AHAT - estimate for Alpha
? ALPHA - input Alpha error probability
- ANOT - average number of items tested to an accept decision
| AVESAM - average sample size
BACK - last section of equation (15)
BETA - input Beta error probability
BHAT - estimate for Beta j
DSEED - seed for random number generator
FIXN - fixed sample size
FXL - equation (15) evaluated at the left bound
FXR - equation (15) evaluated at the right bound
ITER - number of jterations (bisection method)
K - actual value of k used in generation of Weibull deviates

estimated value of k
Monte Carlo repetitions

lower boundary for the sequential tests
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LCOUNT -
) LK -
MIN -

NN -
NTRUN -
R(I) -
RO -
R1 -
REJECT -
REJSAM -
RHAT -
RNOT -
STDRO -
STDR1 -
SUMX -
SUMLX -
T -
THAT -
TOL -
us -
VARRO -
VARRY -
X{(I) -
XL -
M -

. O LI .. e It o

number of truncation decisions

evaluation of equation (15)

minimum sample size

sample size (current)

number of deviates to be generated in GGEXN
truncation point for sequential tests
exponential random deviate

reliability under the null hypothesis
reliability under the alternate hypothesis
number of test reject decisions

reject decision sample size

estimated value of reliability

average number of items tested to a reject decision
standard deviation of §0

standard deviation of §1

sum of the Weibull deviates

sum of natural logarithms of Weibull deviates
value of time for current run

estimate for theta

tolerance for bisection estimation

upper boundary for the sequential tests
variance of ﬁo

variance of ﬁ]

random Weibull deviates

left bound for bisection routine

mean and standard deviation for use in random number generator




XR ~ right bound for bisection routine

N - test statistic
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Frogrezm One

PLO.CM65000, T3000, T810332,LUSSIER, 4482
ATTACH, INSL. ID=LIBRARY, SN=ASD,

LIBRARY, INSL.

FTNS, ANSI=0,

L60.
$E0R
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>
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THIS PROGRAM PERFORNS A SEQUENTIAL TEST TO ESTINATE
THE ALPHA ERROR. HO IS INPUT AS THE TRUE CONDITION
OF RELIABILITY, AND ALPHA IS ESTINATED.

PROGRAN SER

DOUBLE PRECISION DSEED

DIMENSION X(300),R(3)

REAL K,KHAT,LB

DATA RO,R1,FIXN,ALPHA,BETA MIN,L/.9,.729,14.,.1,.2,10,1000/
PRINTS, RO,R1,FIXN,ALPHA,BETA,MIN,L
K=1,

=14,

DSEED=4462,D0

NTRUN=1, SSFIXN

NN={

UPPER AND LOMER BOUNDARIES FOR THE SEQUENTIAL TESTS

UB=LOG{ (1. -BETA) /ALPHA)
LB=LO6(BETA/ (1, -ALPHA))

LCOUNT=0

ACCEPT=0,
REJECT=0,
ACCSAR=),
REJSAN=0,

CALCULATION OF MEAN AND STANDARD DEVIAION TO BE
USED AS INPUT 7O GBEXN

IM=-(TH3K) /LOG (RO)

NONTE CARLO LOOP OF L REPETITIONS
00 200 Isf,L

Na¢

CALL GBEXN(DSEED, XM,NN,R)

NaN+]

XN SRUDIBR(1/K)

GENERATE MIN MEIBULL DEVIATES
IFINLT.NIN) 60 TO 40

CALL SOLVE (X, KHAT, THAT,ITER.N)
IF{ITER.6E.40)60 T0 40
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C  ESTINATE THE RELIABILITY ;
i ¢
: RHAT=EXP (- ( (T/THAT) $3KHAT))
: ¢
C  VARIANCE AS ESTINATED BY THE CRAMER-RAQ LONER BOUND
c
- VARRO= (RO$32) & (LOG (RO) 832) 841, 109-, 5148 (LOG (~LOGRO) ) )+, 6088 ( (LOB
: C(-LOG(RO))) #82)) /N
\ VARRL= (R1$32) $(LOB (R1) 882) 8(1,109-, 5148 (LOB(-LOG(R1) ) ) +, 6088 ( 1LDG 1
C{-LOBIR))) $82)) /N
¢

- STDRO=VARRO#3,3
STOR1=VARRI#3.5

¢ CALCULATE THE TEST STATISTIC AND PERFORM THE SEGUENTIAL TESTS

. C

3 IN={ (RHAT-RO} $32) / (28VARRO) - { (RHAT-R{) 832} / (24VARR1) ~LDS(STDR1) ¢ !
CLOB{STORO) i

9 IF(N.GE.NTRUN) GO TO 435

2 60 70 46

45 LCOUNT=LCOUNT+1
IF(IN.BT.0.)60 TO 48
IFIIN.LT.0.)60 TO 47

4  IF(IN.LT.LBIGO TO 47
IF(IN.6T.UBIGO TQ 48
60 10 40

47 ACCEPT=ACCEPT+!
ACCSAN=ACCSAM+N
60 TD 30

48 REJECT=REJECT#!

* REJSAN=REJSAN+N

e

INTERMEDIATE RESULTS

[ BLIE N o ]

wn
<

: IF (1.EQ.L/5) THEN !
L AHAT=REJECT/I ;
E ANOT=ACCSAN/ACCEPT i
o RNOT=REJSAM/REJECT '
. AVESAN=AHATSRNDT+ (1, -AHAT) $ANDT
‘-;.% PRINTS, "H0: Ra *,R0
== PRINTS,'His R= *,Ri
: PRINTS,” INPUT ALPHA,BETA = *,ALPHA,’,’ ,BETA
PRINTS,’ INPUT HO TRUE’ 5
PRINTS,’MONTE CARLO SAMPLE SIZE *,1 .
{ PRINTE,NUNBER REJECTe * REJECT
PRINTS, ’NUMBER ACCEPT= ’,ACCEPT
PRINTS, TEST ALPHA ’,ANAT
PRINTS,’AVE, NO. ITENS TESTED TO AN ACCEPT DECISION= ’,ANOT
PRINTS,’AVE, NO. ITENS TESTED TO A REJECT DECISION= ’,RNOT
PRINTS,’AVE, SANPLE SIIEs ', AVESAN
PRINTS,’NO, OF TRUNCATION DECISIONS ’,LCOUNT
ENDIF f
IF(1.EQ.L/2) THEN
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AATSREJECT/1

ANOT=ACCSAN/ACCEPT

RNOT=REJSAM/REJECT

AVESAM=AHATIRNOT+ (1, -AHAT) $ANDT

PRINTS, "H0: R= ’,R0

PRINTS,’Hi: R= ' RI

PRINTS,’ INPUT ALPHA,BETA = ’,ALPHA,’,’,BETA

PRINTS,” INPUT HO TRUE’

PRINTS,’NONTE CARLO SAMPLE SIZE ',I

PRINTS,’NUNBER REJECT= ’,REJECT

PRINTS, " NUNBER ACCEPT= *,ACCEPT

PRINTS, TEST ALPHA *,AHAT

PRINTS,’AVE. NO. ITENS TESTED TO AN ACCEPT DECISION= ’.ANOT
PRINTS,’AVE, NO. [TEMS TESTED TO A REJECT DECISION= ’,RNOT
PRINTS,’AVE. SANPLE SIZE= *,AVESAM

PRINTS,’NO. OF TRUNCATION DECISIONS ’,LCOUNT

ENDIF

CONTINUE

AHATSREJECT/L

ANOT=ACCSAN/ACCEPT

ANOT=REJSAM/REJECT

AVESAN=AHATSRNOT+ (1, ~-AHAT) SANOT

PRINTS,"HOs R= ',R0

PRINTS,"H1: R= ’,R1

PRINTS,” INPUT ALPHA,BETA = *,ALPHA,’," ,BETA

PRINTS,” INPUT HO TRUE’

PRINTS,’NONTE CARLO SAMPLE SIZE ’,L

PRINTS,’NUNBER REJECT= ’,REJECT

PRINTS,’NUMBER ACCEPT= ’,ACCEPT

PRINTS, TEST ALPHA ’,AHAT

PRINTS,’AVE. NO. ITEMS TESTED TO AN ACCEPT DECISION= *,ANOT
PRINTS,’AVE. NO. ITENS TESTED TO A REJECT DECISION= ’,RNOT
PRINTS,AVE. SAMPLE SIZE= *,AVESAN

PRINTS,’NO. OF TRUNCATION DECISIONS ’,LCOUNT

ST0P

END

SUBROUTINE SOLVE (X,KHAT, THAT, ITER,N)

SUBROUTINE TD ESTIMATE THE SHAPE(KHAT) AND SCALE
(THAT) PARAMETERS OF THE TWO-PARANETER WEIBULL
DISTRIBUTION, USING THE BISECTION METHOD, EVAL
IS CALLED IN ORDER TO EVALUATE THE EQUATION 70
WHICH A ROOT 1S REQUIRED.

REAL KHAT

T0L=,00001

1TER=0

XL20,1

XRaS,0

KHAT=XL

CALL EVAL (X.KHAT, XL, XR,FXL,FIR, THAT,N)
KHAT=XR

CALL EVAL(X.KHAT,XL,XR.FXL,FIR, THAT,N)
IF(FXLIFXR) 30,100,385
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IFOR-XL.LT.2.870L) 60 TO 100

1F (1TER.6E. 40)60 T0 100

TENP=IL

XL={XLIR) /2

KHAT=XL

CALL EVAL (X,KHAT, XL, R, FXL,FXR, THAT,N)
ITER=ITER+!

60 10 25

XReXL

XL=TENP

(L2 (IL+IR) /2

KHAT=XL

CALL EVAL{X,KHAT, XL, XR,FXL,FXR, TRAT,N)
ITER = ITER+!

60 70 25

KHAT={XL+XR) /2

CALL EVAL (X,KHAT, XL, XR,FXL,FXR, THAT, N)
RETURN

END

SUBROUTINE TO EVALUATE EQUATION (15). ROOT T0
THIS EQUATION GIVES AN ESTIMATE FOR K. THIS
EQUATION REPRESENTS THE FIRST PARTIAL DERIVATIVE
OF THE LOG-LIKELIHOOD FUNCTION WITH RESPECT T0 X
FOR THE TWO-PARAMETER WIEBULL DISTRIBUTION,

SUBRQUTINE EVALCX, XKHAT XL, XR,FYL,FUR, THAT, W)
REAL X{300) ,KHAT,LK

SuNX=0,

SuMLX=0.

BACK=0.

D0 50 I=1.N

SUMX=SUNX+X (1) $SKHAT

SUMLX=SUNLX+LOG (X (1))

THAT= (SUMX/T) 83 ({1 /KHAT)

BACK=BACK+( (X{I) /THAT) RSKHAT} SLOG(X (1) /THAT)
LK=I/KHAT-18L0G (THAT) +SUNLX-BACK

CONTINUE

IF (KHAT.EQ. XL) FIL=LK

IF (KMAT.EQ. XR}FXR=LK

RETURN

END
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Program Two

PL1,CNAS000,T6000. TB10JI32,LUSSIER,4462
ATTACH, IMSL, IDsLIBRARY, SN=ASD,

LIBRARY, INSL.
FTNS, ANS120,
L80.
1E0R
PROGRAN SEQ
¢
C  THIS PROGRAN PERFORMS A SEQUENTIAL TEST 10
C  ESTINATE THE BETA ERROR. M) IS INPUT AS THE
C  TRUE CONDITION OF RELIABILITY, AND BETA IS
L ESTINATED.
¢
DOUBLE PRECISION DSEED
DINENSION X(300),RI(S)
REAL K,KHAT,LB
READS,RO,R1,FIXN, ALPHA, BETA, MIN,L
PRINTS, RO,RI,FIXN,ALPHA, BETA, MIN,L
Ke1,
T’lbl
DSEED=4442, D0
NTRUN=1, SSFTIN
NN=1
¢
C  UPPER AND LOWER BOUNDARIES FOR THE SEQUENTIAL TESTS
¢
UBSLOG{ {1, -BETA) /ALPHA)
LB=LOG(BETA/ (1, ~ALPHA) )
¢
LCOUNT=0
ACCEPT=0,
REJECTa0,
ACCSAN=O,
REJSANSO,
c
C  CALCULATION OF MEAN AND STANDARD DEVIATION TO BE
C  USED AS INPUT TO GBEXN
¢
XMs={T83K) /LOBR1)
¢
C  WONTE CARLO LOOP OF L REPETITIONS
¢
00 200 Isf,L
Ns0
40 CALL GBEXN(DSEED,XM,NN,R)
Nake !
XINYZRU1) 88(1/K)
¢
C  GENERATE WIN WEIBULL DEVIATES
¢

IF(NLT.AIN) BC 70 40
CALL SOLVE(X,KHAT, THAT,ITER,N)
IF(ITER,GE.40)60 7O 40
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c
, C  ESTINATE THE RELIABILITY
c
4 RHATZEXP (- ( (T/THAT) S3KNAT) )
; ¢
‘ C  VARIANCE AS ESTINATED BY THE CRAMER-RAO LOWER BOUND
! o
a VARRO= (RO382) 8 (LOG (R0) $82) 8(1,109-, 5148 (LOG(~LOB (RO) ) ) +, 6088 ( (LOB
C(-LOB(R0))) 832))/N
VARR1= (R1882) 8 (LOG(R1) 882)8(1,109~, 5148 (LOB(-LOBG(R) )+, 6088 (LOG
C(-LOG(R1))) 882)) /N
STORO=VARRO8S. S
STOR1aVARR18S,5
¢
3 C  CALCULATE THE TEST STATISTIC AND PERFORM THE SEGUENTIAL TEST
c ‘
IN={(RHAT-RO) $32) / (28VARRO) - { (RHAT-R1) 822) / (28VARR1) -LOG (STORY) + 1
CLOG(STDRO)
IF (N.GE.NTRUN) GO TO 45
G0 70 46
1 45 LCOUNT=LCOUNT+{ ;
' IF(IN.6T.0.)60 T0 48 %
IF(IN.L7,0,)60 TO 47

46  IF(IN.LT.LBIGO TO 47
IF{IN.GT.UBIGO TO 48
60 O 40

47 ACCEPT=ACCEPT+
ACCSAM=ACCSAN+N
60 70 50 ]

48 REJECTSREJECT+! -
REJSAN=REJSAN+N

INTERNEDIATE RESULTS

R ¢ €3

0 IF(I.EQ.L/S)THEN

BHAT=ACCEPT/]

ANOT=ACCSAN/ACCEPT

RNOT=REJSAN/REJECT

AVESAM= {1, ~BHAT) SRNOT+BHATSANOT

PRINTS, H0s R= *,RO

PRINTS,’H1: R= *,R1

PRINTS,’ INPUT ALPHA,BETA = ’,ALPHA,’,’ ,BETA

PRINTH, " INPUT H! TRUE’

PRINTS,’NONTE CARLOD SAMPLE SIZE ’,I

PRINTS,’NUMBER REJECTs ’,REJECT

PRINTS, ’NUNBER ACCEPT= ’,ACCEPT

PRINTS,TEST BETA’, BHAT

PRINTS, AVE. NO. ITENS TESTED TO AN ACCEPT DECISION= ’,ANOT
PRINTS,’AVE, NO. ITEMS TESTED TO A REJECT DECISIONs ’,RNOT
PRINTS,'AVE. SANPLE SIIEs ’,AVESAN

PRINTS,’NO. OF TRUNCATION DECISIONS ’,LCOUNT

ENDIF

IF(I.EQ.L/Z) THEN

BHAT=ACCEPT/]

N B} Y - " .
Jeiw . ’
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ANOT=ACCSAM/ACCEPY

RNOT=REJSAM/REJECT

AVESAM= {1, -BHAT) SRNOT+BHATSANOT

PRINTS,"HO0s R= RO

PRINTS,"His Rs ’,RI

PRINTS,’ INPUT ALPHA,BETA = ’,ALPHA,’,*,BETA

PRINTS,* INPUT H§ TRUE’

PRINTS, *MONTE CARLO SAMPLE SIZE ',I

PRINTH,'NUNBER REJECT= ’,REJECT

PRINTS,’NUNBER ACCEPT= ’,ACCEPT

PRINTS,’ TEST BETA',BHAT

PRINTS,’AVE. NO. ITENS TESTED TO AN ACCEPT DECISION= ’,ANOT
PRINTY,'AVE. NO. ITENS TESTED TO A REJECT DECISION= ',RNOT
PRINTS,’AVE., SANPLE SIZE= ',AVESAN

PRINTS,’ND., OF TRUNCATION DECISIONS ’,LCOUNT

ENDIF

CONTINUE

FINAL RESULTS

BHAT=ACCEPT/L

ANOT=ACTSAN/ACCEPT

RNOT=REJSAM/REJECT

AVESAN= (1, -BHAT) SRNOT+BHAT$ANOT

PRINTS, H0s R+ ’,RO

PRINTS, His R= ' Rl

PRINTS,’ INPUT ALPHA,BETA = ’,ALPHA,’,’,BETA
PRINTS,” INPUT H1 TRUE’

PRINTS,’MONTE CARLO SAMPLE SIZE °,L
PRINTS,’NUMBER REJECT= *,REJECT

PRINT®, *NUMBER ACCEPT= ’,ACCEPT

PRINTS, ' TEST BETA’,BHAT

PRINTS,"AVE. NO. ITENS TESTED TO AN ACCEPT DECISION= ’,ANOT
PRINTS,"AVE. NO. ITEMS TESTED 7O A REJECT DECISION= ’,RNOT
PRINTS, AVE, SAMPLE SIZE= ’',AVESAM

PRINTS,’NO, OF TRUNCATION DECISIONS ’,LCOUNT
STOP

END

SUBROUTINE SOLVE(X,KHAT,THAT, ITER,N)

SUBROUTINE TO ESTIMATE THE SHAPE(KHAT) AND SCALE
(THAT) PARAMETERS OF THE TNO-PARAMETER WEIBULL
DISTRIBUTION, UBING THE BISECTION METHOD. EVAL
IS CALLED IN ORDER TO EVALUATE THE EQUATION TO
WHICH A ROOT IS REQUIRED.

REAL KHAT

T0L=, 00001

ITERsO

IL=0,}

TRe5,0

KHAT=KL

CALL EVAL (X, KHAT, XL, IR,FXL,FXR, THAT,N)
KHAT=IR

CALL EVAL(X,KHAT,XL,XR,FXL,FXR, THAT,N)

37

b i, AR w2 O eaP Fi T




25 IF(FILIFIR) 30,100,395
30 IF(R=XL.LT.2.870L) 60 TO 100
IF (1TER, GE. 40160 T0 100
TENP=XL
XLx(XL+XR) /2
_ KHAT=XL
- CALL EVAL(X,KNAT, XL, IR, FIL, FIR, THAT,N)
ITERaITER#
60 10 25 ;
35 XReIL ‘
XL=TENP
XLa (XL+XR) /2
KHAT=XL
CALL EVAL (X, KHAT, XL, KR, FXL, FIR, THAT,N)
ITER o ITER+{
§0 10 25
100 KHAT={XL+XR) /2
CALL EVAL (X, KHAT, XL, R, FXL, FIR, THAT, N)
RETURN
END
SUBROUTINE EVAL (X,KHAT, XL, XR, FXL, FXR, THAT, N)

SUBROUTINE TO EVALUATE EQUATION (15). ROOY 70
THIS EQUATION GIVES AN ESTIMTE FOR K. THIS
EQUATION REPRESENTS THE FIRST PARTIAL DERIVATIVE
OF THE LOB-LIXELIHOOD FUNCTION WITH RESPECT TO
K FOR THE TNO-PARANETER WEIBULL DISTRIBUTION,

2O OO

REAL X(300),KHAT,LK
SUMt=0,
SUNL =0,
i BACK=0,
e 00 SO I=f,N
SUNX=SUNX+X (1) $8KHAT
SUNLX=SUNLX+LOB(X (1))
THAT=(SUNX/1) 88 {1/KHAT)
i BACK=BACK* ( {X (1) /THAT) 88KHAT) 8LOG (X (1) /THAT)
i LK#] /KHAT-18L06 ( THAT) +SUNLX-BACK
S0 CONTINUE
x| IF KHAT, E8. SLIFLLK
¥, IF (KHAT, EQ, YR) FXR=LK
* RETURN
END
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Appendix B
Tables
A0 - Average number of samples to accept H0 when H0 is true
R0 - Average number of samples to reject H0 when H0 is true
A! - Average number of samples to accept H0 when H1 is true
R1 - Average number of samples to reject H0 when H] is true

0 and R0 or A] and R1

AVG Sample Size - Weighted average of A
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